Муниципальное казённое общеобразовательное учреждение средняя общеобразовательная школа с.Холуй

СОГЛАСОВАНО	УТВЕРЖДАЮ
На заседании педагогического совета	Директор МКОУСОШ с.Холуй
школы	М.В.Казакова
Протокол №1 от 30.08.2024	Приказ № 229 от 30.08.2024

Программа внеурочной деятельности

(Курсы внеурочной деятельности по выбору учащихся)

«МЕТОДЫ РЕШЕНИЯ ФИЗИЧЕСКИХ ЗАДАЧ»

для обучающихся 10 классов

Срок реализации программы 1 год

Учитель физики Сироткин М.А.

Решение физических задач — один из основных методов обучения физике. В процессе решения задач сообщаются знания о конкретных объектах и явлениях, создаются и решаются проблемные ситуации, приводятся сведения из истории физики и техники, формируются такие черты личности, как целеустремленность, настойчивость, внимательность, аккуратность. Формируются творческие способности.

Цели:

- 1. создание условий для самореализации учащихся в процессе учебной деятельности;
- 2. овладение конкретными физическими знаниями, необходимыми для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования;
- 3. развитие физических, интеллектуальных способностей учащихся, обобщенных умственных умений.

Задачи:

- 1. развить физическую интуицию, выработать определенную технику, чтобы быстро улавливать физическое содержание задачи и справиться с предложенными экзаменационными заданиями;
- 2. овладеть аналитическими методами исследования различных явлений природы;
- 3. обучить учащихся обобщенным методам решения вычислительных, графических, качественных и экспериментальных задач как действенному средству формирования физических знаний и учебных умений;
- 4. способствовать развитию мышления учащихся, их познавательной активности и самостоятельности, формированию современного понимания науки;
- 5. способствовать интеллектуальному развитию учащихся, которое обеспечит переход от обучения к самообразованию.

Планируемые результаты усвоения курса

К концу 10 класса обучающийся научится:

- совершенствовать круг общих учебных умений, навыков и способов деятельности;
- самостоятельно и мотивированно организовывать и оценивать свою познавательную деятельность (от постановки цели до получения и оценки результата);
- использовать элементы причинно-следственного и структурно-функционального анализа.

Получит возможность научиться:

- участвовать в организации и проведении учебно-исследовательской работы: выдвижение гипотез, осуществление их проверки, владение приемами исследовательской деятельности, элементарными умениями прогноза (умение отвечать на вопрос: «Что произойдет, если...»);

- самостоятельно создавать и применять алгоритмы познавательной деятельности для решения задач творческого и поискового характера;
- определять способы решения учебной задачи на основе заданных алгоритмов;
- комбинировать известные алгоритмы деятельности в ситуациях, не предполагающих стандартное применение одного из них;
- сравнивать, находить наиболее рациональные способы решения задач;
- решать графические задачи;
- предсказывать ход графика за пределами таблицы результатов наблюдений; решать качественные задачи;
- анализировать полученные результаты;
- делать выводы;
- обсуждать результаты.
- использования и учета в технике изученных физических законов.

К концу 11 класса обучающийся научится:

- совершенствовать и расширять круг общих учебных умений, навыков и способов деятельности;
- уметь самостоятельно и мотивированно организовывать и оценивать свою познавательную деятельность (от постановки цели до получения и оценки результата);
- описывать и объяснять физические явления и свойства тел: электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- приводить примеры, показывающие, что физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления; приводить примеры практического использования физических знаний: электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- использовать элементы причинно-следственного и структурно-функционального анализа, получают представление о роли физики в познании мира, физических и математических методах исследования.

Получит возможность научиться:

- классифицировать предложенную задачу;
- выполнять и оформлять эксперимент по заданному шаблону;
- владеть различными методами решения задач: аналитическим, графическим, экспериментальным и т.д.;
- выбирать рациональный способ решения задачи;
- решать комбинированные задачи;
- воспринимать различные источники информации, готовить сообщения, доклады, исследовательские работы;
- самостоятельно создавать и применять алгоритмы познавательной деятельности для решения задач творческого и поискового характера;
- осваивать методики и способы решения комплексных задач повышенной сложности.

Личностные результаты:

- умение управлять своей познавательной деятельностью;
- умение сотрудничать со взрослым, сверстниками, детьми младшего возраста в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- положительное отношение к труду, целеустремленность.
- положительное отношение к российской физической науке;
- готовность к осознанному выбору профессии.

Метапредметные результаты:

освоение регулятивных универсальных учебных действий:

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы,— сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- определять несколько путей достижения поставленной цели;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- осознавать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей; освоение познавательных универсальных учебных действий:
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречи— искать и находить обобщенные способы решения задач;
- приводить критические аргументы, как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничены;
- занимать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над еè решением; управлять совместной познавательной деятельностью и подчиняться); освоение коммуникативных универсальных учебных действий:
- осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за еè пределами);
- при осуществлении групповой работы быть как руководителем, так и леном проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- подбирать партнеров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;

— точно и емко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметные результаты:

- сформированность представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания, о роли и месте физики в современной научной картине мира; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;
- сформированность представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;
- владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; владение умениями обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
- владение умениями выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования; владение умениями описывать и объяснять самостоятельно проведенные эксперименты, анализировать результаты полученной из экспериментов информации, определять достоверность полученного результата;
- умение решать физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
- сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

Содержание курса 10 -11 класс

Правила и приемы решения физических задач.

Что такое физическая задача? Физическая теория и решение задач. Составление физических задач. Основные требования к составлению задач. Общие требования при решении физических задач. Этапы решения задачи. Формулировка плана решения. Выполнения плана решения задачи. Числовой расчет. Анализ решения и оформление решения. Типичные недостатки при решении и оформлении решения задачи. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии. Методы размерностей, графические решения, метод графов и т.д.

Операции над векторными величинами.

Скалярные и векторные величины. Действия над векторами. Задание вектора. Единичный вектор. Умножение вектора на скаляр. Сложение векторов. Вычитание векторов. Проекции вектора на координатные оси и действия над векторами. Проекции суммы и разности векторов.

Равномерное движение. Средняя скорость (по пути и перемещению).

Перемещение. Скорость. Прямолинейное равномерное движение. Графическое представление движения. Средняя путевая и средняя скорость по перемещению. Мгновенная скорость.

Закон сложения скоростей.

Относительность механического движения. Радиус-вектор. Движение с разных точек зрения. Формула сложения смещения.

Одномерное равнопеременное движение.

Ускорение. Равноускоренное движение. Движение при разгоне и торможении. Перемещение при равноускоренном движении. Свободное падение. Ускорение свободного падения. Начальная скорость. Движение тела, брошенного вертикально вверх.

Двумерное равнопеременное движение.

Движение тела, брошенного под углом к горизонту. Определение дальности полета, времени полета. Максимальная высота подъема тела при движении под углом к горизонту. Время подъема до максимальной высоты. Скорость в любой момент движения. Угол между скоростью в любой момент времени и горизонтом. Уравнение траектории движения.

Динамика материальной точки. Поступательное движение.

Координатный метод решения задач по механике.

Движение материальной точки по окружности.

Период обращения и частота обращения. Циклическая частота. Угловая скорость. Перемещение и скорость при криволинейном движении. Центростремительное ускорение. Закон Всемирного тяготения.

Импульс. Закон сохранения импульса.

Импульс тела. Импульс силы. Явление отдачи. Замкнутые системы. Абсолютно упругое и неупругое столкновение.

Работа и энергия в механике. Закон изменения и сохранения механической энергии.

Консервативные и неконсервативные силы. Потенциальная и кинетическая энергия. Полная механическая энергия.

Статика и гидростатика.

Условия равновесия тел. Момент силы. Центр тяжести тела. Виды равновесия тела. Давление в жидкости. Закон Паскаля. Гидравлический пресс. Сила Архимеда. Вес тела в жидкости. Условия плавания тел. Воздухоплавание. Несжимаемая жидкость.

Основы молекулярно – кинетической теории.

Экспериментальные доказательства МКТ. Абсолютная температура. Модель идеального газа. Давление газа. Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа. Уравнение Менделеева — Клапейрона. Закон Дальтона. Газовые законы. Агрегатные состояния вещества. Фазовые переходы. Преобразование энергии в фазовых переходах. Насыщенные и ненасыщенные пары. Влажность воздуха.

Основы термодинамики.

Внутренняя энергия одноатомного газа. Работа и количество теплоты. Алгоритм решения задач на уравнение теплового баланса. Первый закон термодинамики. Адиабатный процесс. Тепловые двигатели. Расчет КПД тепловых установок графическим способом.

Электрическое и магнитное поля.

Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциалов, энергией. Алгоритм решения задач: динамический и энергетический. Решение задач на описание систем конденсаторов. Задачи разных видов на описание магнитного поля тока: магнитная индукция и магнитный поток, сила Ампера и сила Лоренца.

Законы постоянного тока.

Задачи на различные приемы расчета сопротивления сложных электрических цепей. Задачи разных видов на описание электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи, закона Джоуля — Ленца, законов последовательного и параллельного соединений.

Электрический ток в различных средах.

Электрический ток в металлах, газах, вакууме. Электролиты и законы электролиза. Решение задач на движение заряженных частиц в электрическом и электромагнитных полях: алгоритм движения по окружности, движение тела, брошенного под углом к горизонту, равновесие тел.

Механические колебания и волны.

Колебательное движение. Свободные колебания. Колебательные системы. Маятник. Величины, характеризующие колебательное движение.

Гармонические колебания. Амплитуда и фаза колебаний. Период колебаний. Частота колебаний. Вынужденные колебания. Резонанс. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания.

Распространение колебаний в упругой среде.

Волны. Продольные и поперечные волны. Скорость распространения волн. Длина волны.

Электромагнитные колебания.

Задачи разных видов на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность. Уравнение гармонического колебания и его решение на примере электромагнитных колебаний. Решение задач на характеристики колебаний, построение графиков. Переменный электрический ток: решение задач методом векторных диаграмм.

Волновые и квантовые свойства света.

Задачи по геометрической оптике: зеркала, призмы, линзы, оптические схемы. Построение изображений в оптических системах. Задачи на описание различных свойств электромагнитных волн: отражение, преломление, интерференция, дифракция, поляризация.

Классификация задач по СТО и примеры их решения. Квантовые свойства света. Алгоритм решения задач на фотоэффект Состав атома и ядра. Ядерные реакции. Алгоритм решения задач на расчет дефекта масс и энергетический выход реакций, закон радиоактивного распада.

Тематическое планирование

10 класс (68ч, 2ч в неделю)

Тема	Характеристика деятельности ученика	Кол-во
Проруда и пругоди розголуд	Имати процетерномие с прорудом и присмем	часов
Правила и приемы решения	—Иметь представление о правилах и приемах	1
физических задач	решения физических задач.	
Операции над векторными	—Различать скалярные и векторные величины.	4
величинами	—Выполнять действия над векторами.	
	—Умножать вектор на скаляр.	
	—Складывать и вычитать вектора.	
	—Находить проекции вектора на координатные	
	оси.	
Равномерное движение.	—Определять координаты, пройденный путь,	6
Средняя скорость (по пути и	скорость и ускорение тела по уравнениям	
перемещению)	зависимости координат и проекций скорости от	
	времени.	
	—Экспериментально исследовать различные виды	
	движения.	
	—Классифицировать виды, уравнения движения.	
	—Применять знания к решению физических задач.	
Закон сложения скоростей	—Понимать относительность механического	6
	движения.	
	—Рассматривать движение с разных точек зрения.	
	—Знать и применять формулу сложения смещения.	
Одномерное	—Знать определение ускорения, равноускоренного	6
равнопеременное движение	движения, ускорения свободного падения.	
	—Вычислять перемещение при равноускоренном	
	движении.	
	—Понимать особенности свободного падения,	
	движения тела, брошенного вертикально вверх.	
	—Вычислять начальную скорость.	
Двумерное равнопеременное	—Понимать особенности движения тела,	6
движение	брошенного под углом к горизонту.	

	—Определять дальность полета, время полета,	
	максимальную высоту подъема тела при движении	
	под углом к горизонту, время подъема до	
	максимальной высоты, скорость в любой момент	
	движения.	
	—Знать уравнение траектории движения.	
Самостоятельная работа №1	- Применять знания к решению задач.	2
"Равноускоренное движение"		
Динамика материальной	—Применять координатный метод решения задач	4
точки. Поступательное	по механике.	
движение		
Движение материальной	—Вычислять период обращения и частоту	4
точки по окружности	обращения, циклическую частоту, угловую	
	скорость, перемещение и скорость при	
	криволинейном движении, центростремительное	
	ускорение.	
	—Применять закон Всемирного тяготения при	
	решении задач.	
Импульс. Закон сохранения	Измерять массу тела.	6
импульса	—Измерять силы взаимодействия тел.	
	—Проверять экспериментально результаты	
	теоретических расчетов сил, ускорений, масс.	
	—Применять закон всемирного тяготения при	
	расчетах сил и ускорений взаимодействующих тел.	
	—Измерять и вычислять импульс тела.	
	—Применять закон сохранения импульса для	
	вычисления изменений скоростей тел при их	
	взаимодействии.	
	—Измерять и вычислять работу сил и изменение	
	кинетической энергии тела.	
	—Вычислять потенциальную энергию тел в	
	гравитационном поле.	
	—Определять потенциальную энергию	
	упругодеформированного тела.	
	—Применять закон сохранения механической	
	энергии для замкнутой системы	
	взаимодействующих тел.	
Работа и энергия в механике.	—Различать консервативные и неконсервативные	4
Закон изменения и	— газличать консервативные и неконсервативные силы.	-
	—Вычислять потенциальную и кинетическую	
сохранения механической	<u> </u>	
энергии	энергию. —Вычислять полную механическую энергию.	
Стотумо и гууча с отс	· · · · · · · · · · · · · · · · · · ·	1
Статика и гидростатика	—Применять условия равновесия тел.	4
	—Вычислять момент силы.	
	—Применять закон Паскаля.	
Ogyopy, vo zavaza	—Вычислять силу Архимеда, вес тела в жидкости.	1
Основы молекулярно-	—Владеть приемами построения теоретических	4
кинетической теории	доказательств, а также прогнозирования	
	особенностей протекания физических явлений и	
	процессов на основе полученных теоретических	
	выводов и доказательств.	
	—Самостоятельно конструировать	
	экспериментальные установки для проверки	
	выдвинутых гипотез, рассчитывать абсолютную и	
	относительную погрешности.	

Самостоятельная работа №2 "Основы МКТ"	 —Решать практико-ориентированные качественные и расчетные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией. —Объяснять границы применения изученных физических моделей при решении физических и межпредметных задач. - Применять знания к решению задач. 	1
Основы термодинамики	 — Оперировать физическими понятиями/процессами/явлениями в предметном, межпредметном и метапредметном контекстах. — Решать задачи с применением основного уравнения молекулярно-кинетической теории. — Объяснять с точки зрения статистической физики смысл термодинамических параметров. — Рассчитывать количество теплоты, необходимое для осуществления процесса с теплопередачей. — Рассчитывать количество теплоты, необходимое для осуществления процесса перехода вещества из одной фазы в другую. — Рассчитывать изменение внутренней энергии тел, работу и переданное/полученное количество теплоты с использованием первого закона термодинамики. — Рассчитывать работу, совершенную газом/над газом, по графику зависимости р(V) — вычислять работу газа, совершенную при изменении состояния по замкнутому циклу. — Рассчитывать КПД тепловой машины. — Применять знания к решению физических задач. 	8
Итого		68

Тематическое планирование

11 класс (34ч, 1ч в неделю)

Тема	Характеристика деятельности ученика	Кол-
		В0
		часов
Электрическое и магнитное	—Решать задачи разных видов на описание	6
поля	электрического поля различными средствами:	
	законами сохранения заряда и законом Кулона,	
	силовыми линиями, напряженностью, разностью	
	потенциалов, энергией.	
	—Применять алгоритм решения задач:	
	динамический и энергетический.	
	—Решать задачи на описание систем	
	конденсаторов.	

	T	
	—Решать задачи разных видов на описание	
	магнитного поля тока: магнитная индукция и	
	магнитный поток, сила Ампера и сила Лоренца.	
Законы постоянного тока	—Объяснять механизм электризации тел.	5
	— Вычислять силы взаимодействия точечных	
	зарядов.	
	— Вычислять напряженность электростатического	
	поля одного/ нескольких точечных электрических	
	зарядов.	
	— Вычислять потенциал электростатического поля	
	одного/ нескольких точечных электрических	
	зарядов.	
	— Вычислять энергию электрического поля	
	заряженного конденсатора.	
	— Выполнять расчеты силы тока и напряжений на	
	участках электрической цепи.	
Электрический ток в	— Объяснять механизмы электрической	3
различных средах	проводимости различных веществ.	
	— Снимать вольт-амперную характеристику диода.	
	— Классифицировать информацию.	
	— Оперировать понятиями в предметном,	
	межпредметном и метапредметном контекстах.	
	—Применять знания к решению физических задач.	_
Механические колебания и	—Применять знания о колебаниях и волнах для	5
волны	решения задач.	
	—Уметь объяснять особенности распространения	
	колебаний, волн, звука в различных средах.	
	—Знать и применять характеристики колебаний и	
	волн для объяснения явлений в природе и решения	
	задач.	
	—Работать с оборудованием во время	
	экспериментальной деятельности и применять эти	
	знания и умения при работе с радиоэлектроникой.	
	—Объяснять и применять закон сохранения	
	энергии для определения полной энергии колеблющегося тела.	
	колеолющегося тела. —Объяснять процесс колебаний маятника,	
	исследовать зависимость периода колебаний	
	маятника от его длины и амплитуды колебаний.	
	—Исследовать закономерности колебаний груза на	
	пружине.	
	—Вычислять длину волны и скорости	
	распространения звуковых волн.	
	—Экспериментально определять границы частоты	
	слышимых звуковых колебаний.	
Самостоятельная работа №1	- Применять знания к решению задач.	1
"Механические колебания и	1 P	
волны"		
Электромагнитные колебания	—Давать определение понятий: электромагнитные	6
	колебания, колебательный контур, свободные	
	электромагнитные колебания, вынужденные	
	электромагнитные колебания, переменный	
	электрический ток, активное сопротивление,	
	индуктивное сопротивление, емкостное	
	_ ·	
	сопротивление, полное сопротивление цепи	

Φ 0103φφ c Κ1		
"Фотоэффект"		
Самостоятельная работа №2	- Применять знания к решению задач.	1
	- Определять продукты ядерных реакций.	
	- Записывать ядерные реакции.	
	распада, указывать границы его применимости.	
	- Записывать, объяснять закон радиоактивного	
	энергию связи конкретных атомных ядер.	
	- Вычислять дефект масс, энергию связи и удельную	
	помощью таблицы Менделеева.	
	- Определять состав ядер различных элементов с	
	атома из одного стационарного состояния в другое.	
	длину волны испускаемого фотона при переходе	
	- Рассчитывать в конкретной ситуации частоту и	
	- Формулировать квантовые постулаты Бора.	
	дуализма.	
	- Объяснять суть корпускулярно-волнового	
	- Приводить примеры использования фотоэффекта.	
	помощью неизвестные величины.	
	Эйнштейна для фотоэффекта и находить с его	
	составлять в конкретных ситуациях уравнение	
	- Гаспознавать, наолюдать явление фотоэффекта Анализировать законы фотоэффекта. Записывать и	
	- Распознавать, наблюдать явление фотоэффекта.	
своиства света	выхода, красная граница фотоэффекта.	
Волновые и квантовые свойства света	ток насыщения, задерживающее напряжение, работа	/
Ронновия и краитория	выполнении практических задании Давать определение понятий: фотоэффект, квант,	7
	выполнении практических заданий.	
	- Работать в паре и группе при решении задач и	
	частоты, длины волны, разности фаз волн.	
	- Определять в конкретных ситуациях скорости,	
	- Объяснять принцип получения переменного тока, устройство генератора переменного тока.	
	электромагнитные колебания.	
	конкретных ситуациях. Исследовать	
	Определять период, частоту, амплитуду колебаний в	
	частоту свободных электромагнитных колебаний.	
	- Вычислять с помощью формулы Томсона период и	
	- Записывать формулу Томсона.	
	коэффициент;	
	1_1	
	действующее значение напряжения, трансформатор,	

Материально-техническое обеспечение

Технические средства обучения.

- 1. Оборудованный в соответствии с современными требованиями кабинет физики.
- 2. Интерактивная доска.
- 3. Персональный компьютер.
- 4. Проектор.
- 5. VEВ камера.
- 6. Цифровая лаборатория «Архимед», «L-микро».
- 7. Графопроектор,
- 8. Монохромноем лазерное МФУ «Samsung» (принтер, копир, сканер).

9. Доска комбинированная.

ЦОРы по физике.

- 1. Физика 7-9 классы. Демонстрации, история, уроки, теория
- 2. Физика 7-11 ООО. НЦ (Физикон)
- 3. Экспериментальные задачи по механике. ООО «Кирилл и Мефодий», 2008.
- 4. Виртуальные лабораторные работы по физике. 7-9 классы. ЗАО «Новый дом», 2007.
- 5. Анимация: движение частиц в магнитных полях, однородных и неоднородных, магнитное поле Земли. Фотоэффект исследование, графики. Интерференция в тонких пленках, клин.
- 6. Электронный задачник по физике. МИФИ.
- 7. Демонстрации по механике: относительность движения, инерция, инертность, реактивное движение, атмосферное давление.
- 8. «Живая физика» Институт новых технологий в образовании (ИНТ). Москва.
- 9. 1C: Репетитор. Физика. М.: Фирма «1С».
- 10. «Электронный задачник по физике» М :Медиа Паблишинг.
- 11. Демонстрации по оптике: побочная ось, побочный фокус, глаз, распределение энергии в сплошном спектре, фотоэффект.

Литература для учащихся

- 1. Баканина Л. П. и др. Сборник задач по физике: Учеб. пособие для углубл. изуч. физики в 10-11 кл. М.: Просвещение, 1995.
- 2. Кабардин О. Ф., Орлов В. А., Зильберман А. Р. Задачи по физике. М.: Дрофа, 2002.
- 3. Козел С. М., Коровин В. А., Орлов В. А. и др. Физика. 10—11 кл.: Сборник задач с ответами и решениями. М.: Мнемозина, 2004.

Литература для учителя

- 1. Аганов А. В. и др. Физика вокруг нас: Качественные задачи по физике. М.: Дом педагогики, 1998.
- 2. Зорин Н.И. Элективный курс «Методы решения физических задач» М. «ВАКО», 2007.

Интернет - ресурсы:

- 1. http://www.physics.ru/ -"Открытая физика";
- 2. http://www.fizika.ru/ сайт для учащихся и преподавателей физики;
- 3. **http://www.fipi.ru/** сайт ФИПИ;
- 4. http://ege.edu.ru/ портал информационной поддержки ЕГЭ;